
$\because a_{1}=-\dfrac{1}{2}$;
$\therefore a_{2}=\dfrac{1}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}$;
$a_{3}=\dfrac{1}{1-\dfrac{2}{3}}=3$,
$\ldots$
$-\dfrac{1}{2}$,$\dfrac{2}{3}$,$3$依次循环,
又$\because 2006\div 3=668\ldots 2$,
$\therefore a_{2006}=\dfrac{2}{3}$.
